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Abstract
Within the framework of the envelope-function approximation the single-particle and the
optical gaps of silicon nanocrystals embedded in amorphous SiO2, Si3N4, Al2O3 and ZrO2

dielectric matrices were calculated. We employ the model of an Si quantum dot surrounded by a
spherical thin intermediate layer with a radially varying permittivity, separating the nanocrystal
and the host dielectric matrix. The latter was modelled by the finite-height potential barriers. It
has been shown that both the single-particle and optical gaps of the nanocrystals essentially
depend on the surrounding material due to the variation of the band offsets for different
matrices, which leads to essential shifts of the size-quantized levels. At the same time, an
influence of the polarization fields on the optical gap was found to be weak compared to the
variation of the confining potential, because of the mutual cancellation of single- and
two-particle polarization contributions, which is known as a ‘compensation effect’. As a result,
hydrogen-like screened electron–hole Coulomb interactions, in fact, individually contribute to
the excitonic correction. It has been revealed that the excitonic corrections have close values for
the nanocrystals embedded in all the considered matrices: the dispersion of their values is even
considerably less than that of the polarization correction values.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It is well known that use of indirect bandgap semiconductors
in optical applications is awkward because of the small
probability of indirect optical transitions that are completely
forbidden in bulk materials in the absence of phonons. In
connection with this, a lot of research activity in the last
15 years has been concentrated on the optical properties of
silicon nanocrystals (quantum dots), with sizes of about several
nanometres, in which the electron–hole interband transition
becomes allowed even without phonons. Usually, however, Si
crystallites are formed in some wide-band dielectric matrices
which can influence the properties of the crystallites.

In particular, the matrix has a dielectric constant εd

different from that of bulk Si (εs). The dielectric constant
mismatch creates polarization fields which can be treated as
fields induced by the electron and hole images. Sometimes,
these fields play an important role in the formation of quantum
electron states in various low-dimensional structures. For

instance, earlier, the so-called dielectric amplification effect for
excitons in quantum wires has been theoretically predicted [1].
In quantum dots, due to the 3D confinement of the carriers,
it is possible to expect as well a significant influence of the
polarization fields on the electron and hole states, and the
optical gap. If so, then different host dielectric matrices could
strongly influence the nanocrystal’s bandgap.

Besides, the host matrices differ from each other by their
forbidden bands. This results in different band offsets from Si
for different matrices. Consequently, the carriers turn out to
be confined inside the nanocrystal by the potential barriers of
different heights, which can appreciably shift the energy levels
of the carriers and change the nanocrystal’s gap as well.

In this work we examine the influence of the dielectric
surroundings, and of the direct electron–hole Coulomb
interaction on the optical gap of silicon nanocrystals, taking
into account finite band discontinuity at the interface. For
this purpose, we shall calculate the single-particle gap defined
by the size quantization only, and the optical gap of a
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silicon quantum dot placed in various amorphous dielectric
matrices with different forbidden bands and different dielectric
constants. It is important to emphasize that all these dielectric
materials are supposed to be amorphous in order to minimize
the contribution of strain fields arising in the interface domain.
In what follows, we neglect the effect of strain and consider
some typical dielectrics being usually the host matrices for Si
crystallites, such as: SiO2 (εd = 3.9 [2, 3]); Si3N4 (εd = 7 [3]);
Al2O3 (εd = 10 [4]) and ZrO2 (εd = 25 [5]).

Earlier, the single-particle spectra [6–11] as well as the
excitonic corrections to the single-particle gap of silicon
quantum dots [9–15] have been calculated in the presence of
polarization fields. However, previous calculations had some
drawbacks. First, in some works, an approximation of infinite
potential barriers was used [6, 7, 9, 12, 14, 15], which leads to
overestimated values of electron and hole energies. This makes
a quantitative comparison of theoretical and experimental
results difficult. Second, when solving the electrostatic part
of the problem, the step-like model of a dielectric function
was usually employed. In this case the self-polarization
field creates an infinite impenetrable potential barrier at the
interface. Therefore, independently of the band offset values,
we have to use the model of infinite potential barrier, leading
again to overestimated values of the exciton energy. In the
opposite case, if potential barriers for electrons and holes
were assumed to be finite, the authors of the mentioned
works had to (i) ignore polarization fields and suppose that
the single-particle self-polarization and two-particle excitonic
polarization corrections cancel each other [11, 13, 14] or (ii)
artificially remove the divergence in expressions for the self-
polarization fields [10].

An application of the first-principles methods to comput-
ing the single-particle energies, self-polarization and excitonic
corrections allows one to avoid these troubles. However,
ab initio methods require lots of time and cannot be really
applied to nanocrystals with diameters greater than 2 nm.
For this reason, it is so far difficult (or, rather, impossible)
to describe correctly with the first-principles methods the
screening action of the dielectric environment on the electron
and hole states in a nanocrystal. In contrast, various empirical,
or semi-empirical, methods such as pseudopotential [16], tight-
binding model [17] or envelope-function approximation (k ·p-
method) allow one to consider polarization fields in a natural
manner. We shall further use an approach based on the
envelope-function approximation.

In order to avoid unphysical divergences in the self-
polarization corrections in the case of finite band offsets at the
interface, we shall assume an existence of a narrow transition
layer of thickness a between the nanocrystal and the dielectric
matrix. The dielectric function of this layer varies continuously
along a radial direction from εs = 12 for silicon to εd for
the dielectric environment. A similar procedure was used for
a model with an isotropic quadratic dispersion law [18]. In
contrast to this work, we take into account the anisotropy of the
silicon band structure and use some special dependence ε(r)
that makes possible an analytical solution of the electrostatic
problem.

In our study we treat the Coulomb interaction as a
perturbation with respect to the confining potential. Such

Figure 1. Schematic representation of the band structure, and the
dielectric function of Si nanocrystal surrounded by a spherical
transition layer, and insulating matrix.

an approximation is justified if the nanocrystal radius is less
than the exciton Bohr radius. This relationship is valid
for sufficiently small quantum dots with diameters about, or
less than, 5–6 nm, for which all the calculations have been
carried out.

2. Electrostatic problem: the model

Let us consider a spherical silicon quantum dot with radius
R and dielectric constant εs embedded in an insulator with
dielectric constant εd. We denote potential barriers for
electrons and holes at the quantum dot boundary as Ue and
Uh, respectively, and suppose them to be constant within
the transition layer and outside. Neglecting weak exchange
interaction, one may write the ground-state wavefunction
of the exciton as a product of the electron and hole
wavefunctions. Earlier [19, 20], the single-particle electron
and hole wavefunctions were found by taking into account
the anisotropy of the silicon band structure. In this work,
we use the results of our previous calculations [20] where the
model of finite potential barriers at the dot interface has been
considered.

The key point of our consideration is the position
dependence of the dielectric function inside the transition layer.
We choose the dependence in the following form:

ε(r) = εs(r/R)q (1)

with
q = log(εd/εs)/log(1 + a/R). (2)

We suppose that the thickness a of the transition layer is
much smaller than the dot radius: a � R, hence, q ≈
R log(εd/εs)/a.

The dependence ε(r) given by equation (1) provides
a smooth variation of the permittivity value from εs for
silicon to εd for the dielectric surroundings, as schematically
shown in figure 1. Of course, to a certain extent, such
an artificial introduction of the transition layer and position-
dependent dielectric function within the layer is not a rigorous
procedure which cannot be strictly validated, at least within the
framework of the envelope-function approximation. Rigorous
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calculations could be performed with first-principles methods
but such calculations are very complicated and require lots
of computational time and effort. It is clear, however, that
some narrow spatial layer, in which structure transition from
crystalline Si to amorphous dielectric occurs, really exists
around the nanocrystal. At the same time, one can expect
an insignificant contribution to the energy spectra from the
transition area because of its small thickness. For this reason,
it is possible to accept the simplest concept of the local
dielectric function ε(r) instead of the ‘rigorous procedure’ for
the considered system. Then, we have to assign within the layer
to ε some values being intermediate between εs and εd. These
values are defined by equation (1).

Evidently, the potential barrier at the interface should
behave similarly. It is logical to assume a gradual rise of the
barrier height within the transition layer from zero to Ue,h as r
increases from R to Ra = R + a. However, such a model of
the band offset would essentially impede our calculations with
no real corrections to the computed energies, as was, in fact,
estimated by Bolcatto and Proetto [18]. Therefore, we accept
the step-like model for the band offset, supposing the ‘step’ to
be at r = R as shown in figure 1.

As was just pointed out, the transition layer is expected to
be weakly contributing to the energy-gap corrections because
of the small thickness. Therefore, an explicit form of ε(r) is
not so important, and we can choose any smooth monotonic
dependence for the dielectric function. The chosen form of
ε(r) (equation (1)) is caused only by convenience, because
only a power law allows one to solve the electrostatic problem
exactly.

Indeed, within the intermediate layer, when finding the
electrostatic potential induced by the point charge situated, for
example, inside the nanocrystal, we have to solve the Laplace
equation div[ε(r)∇ϕ] = 0. Drawing the z axis through the
point charge, we can expand the potential as follows: ϕ(r, θ) =∑

� ϕ�(r)P�(cos θ). Functions ϕ�(r) obey the equation

d2ϕ�

dr 2
+

(
1

ε

dε

dr
+ 2

r

)
dϕ�
dr

− �(�+ 1)

r 2
ϕ� = 0. (3)

It is seen that equation (3) transforms into the standard Euler
equation if ε−1dε/dr = q/r with some arbitrary parameter
q . In other words, the dielectric function inside the layer is
of the following form: ε(r) = Crq . Both C and q are found
from the boundary conditions ε(R) = εs and ε(Ra) = εd,
which lead to equations (1) and (2). As a result, the solution of
equation (3) is given by ϕ�(r) = A�rα+B�r−β , where (α β) =
(− +)(1 + q)/2 +√

(1 + q)2/4 + l(l + 1). Constants A� and
B� can be found, as usual, from the boundary conditions for
the electrostatic potential.

The solution of the electrostatic problem allows us to
obtain the total potential energy of the electron–hole pair in the
system. The Coulomb potential energy consists of two parts.
The first part, usually called the self-polarization potential
energy Vsp(r), corresponds to the interaction between each
carrier and its own image. The second part represents the
electron–hole interaction, in which both the screened direct
Coulomb interaction and interaction of each carrier with an
image of another carrier are taken into account.

After some algebra, we obtain analytical expressions for
the electron potential energy in the self-polarization field:

Vsp(r < R) = e2q

2(q + 1)

(
1

εd Ra
− 1

εs R

)

+ e2q

2Rεs

×
∞∑

l=1

(l + 1)(1 − (Ra/R)α+β)(r/R)2l

(α − l)(l + 1 − β)+ (l + 1 + α)(l + β)(Ra/R)α+β ,

Vsp(R < r < Ra) ≈ e2q

8ε(r)r

(
R

r
log

(

1 −
(

R

r

)2)

− r

Ra
log

(

1 −
(

r

Ra

)2))

,

Vsp(r > Ra) = − e2q

2Raεd

×
∞∑

l=1

l(1 − (Ra/R)α+β)(r/R)2l

(α − l)(l + 1 − β)+ (l + 1 + α)(l + β)(Ra/R)α+β .

(4)

If the electron is situated inside the transition layer, the
explicit expression for the self-polarization potential is too
cumbersome. This is why we keep in Vsp(R < r < Ra)

only the main terms giving logarithmic divergence. Note
that outside the layer the self-polarization potential energy
also logarithmically diverges at r → R − 0, and r →
Ra + 0. Such potential barriers, however, permit electron
tunnelling in contrast to the model of the step-like dielectric
function. As a result, the self-polarization corrections to the
single-particle energies and exciton binding energy turn out
to be finite. Therefore, the use of the model with finite
potential barriers becomes possible. Expressions for the self-
polarization potential energy of holes are the same.

The potential energy of the electron–hole interaction has
no non-integrable peculiarities even if ε(r) is the step-like
function. Therefore, the presence of the intermediate layer
has no principal mean for the excitonic correction in contrast
to the self-polarization shift. Nevertheless, when calculating
the excitonic correction to the optical gap, we employ the
model with an intermediate layer. Explicit expressions for
the potential energy of the electron–hole interaction are very
cumbersome; therefore, we do not adduce them here. Note
only that this expression can be written as the sum Veh =
V (c)

eh +V (p)
eh , where V (c)

eh represents the direct screened Coulomb
interaction, while the second term, V (p)

eh , stands for the
interaction of one carrier with the image of another carrier, i.e.
the polarization electron–hole interaction.

It is worth noting that taking into account the macroscopic
polarization fields induced by the charge images is similar to
the introduction of some effective dielectric function εeff(r) of
the whole nanocrystal [21] (do not confuse this with ε(r) in
the transition layer). The distinguishing feature of εeff(r) is
that its value varies over the nanocrystal, and at the nanocrystal
interface it coincides, in fact, with εd [21–26]. Thus, inside the
nanocrystal, the effective dielectric function differs from the
static bulk silicon permittivity εs. The origin of the existing
difference between εeff(r) and εs is caused precisely by the
polarization charges which screen the external electric field
in addition to the screening effect of Si valence electrons.
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Table 1. Band offsets from Si for electrons (Ue) and holes (Uh), and
dielectric constants (εd) for: SiO2 [3], Si3N4 [3, 32] (εd, and band
offsets, respectively), Al2O3 [4, 32] and ZrO2 [2, 5].

Material Ue (eV) Uh (eV) εd

SiO2 3.2 4.5 3.9
Si3N4 2.4 1.7 7
Al2O3 2.8 4.8 10
ZrO2 1.4 2.4 25

The screening action of the polarization charges is completely
described by the interaction of the electron, and the hole with
their own images and with the image of the carrier of the
opposite type, which is included in our consideration.

3. Results and discussion

Solving the Schrödinger equation for the electron and hole
single-particle energies and wavefunctions, one can compute
the nanocrystal’s optical gap � represented as the sum of two
parts: � = �0 + δ. The first of these is the single-particle
gap�0 defined exclusively by the quantum confinement effect
without self-polarization and excitonic corrections. In turn,
�0 is the sum of the bulk silicon bandgap εg = 1.17 eV
and the single-particle energies of the electron and the hole
counted from the corresponding band edges of the bulk Si.
The second part, δ, stands for the correction to �0 caused by
the polarization fields and the direct Coulomb electron–hole
interaction. Correspondingly, the total correction δ consists of
two parts: polarization correction, δp, and Coulomb correction,
δc.

To the first order of perturbation theory, the polarization
correction δp equals the matrix element of the total
‘polarization’ potential energy:

δp = 〈ψe|Vsp|ψe〉 + 〈ψh|Vsp|ψh〉 + 〈ψeψh|V (p)
eh |ψeψh〉. (5)

Here, single-particle wavefunctions ψe and ψh describe the
electron and hole ground states, respectively. The Coulomb
shift δc is defined to first order as

δc = 〈ψeψh|V (c)
eh |ψeψh〉. (6)

Thus, the total bandgap correction has the form: δ = δp + δc.
When computing the single-particle wavefunctions, we

assume the k·p Hamiltonian operator outside the nanocrystal to
be the same as that employed inside [19, 20]. Strictly speaking,
such an assumption is, of course, incorrect. Nevertheless,
we have to apply some macroscopic procedure, like the k · p
method, for the amorphous surroundings in order to retain a
unified approach for the description of the electronic states in
the system. This treatment is, in part, justified by the weak
penetration of the wavefunctions into the outer region which
causes only a small contribution to the optical gap and its
corrections. As a result, we characterize the outer material,
including the transition layer, by the potential barriers Ue and
Uh for the electrons and the holes, respectively. This is the only
way which distinguishes between the dielectric matrix and the
nanocrystal within the framework of our model.

Figure 2. Size dependence of the confinement energy EC of a
non-interacting electron–hole pair in silicon nanocrystal embedded in
an SiO2 matrix. Inset shows the differences of the confinement
energies for nanocrystals embedded in SiO2 and in other matrices
indicated in the inset.

As has been already mentioned above, in the present
paper, we examine, in particular, the effect of a host dielectric
matrix on the optical gap of silicon nanocrystals embedded
in this matrix. We consider several amorphous matrices,
in which photoluminescence of nanocrystalline silicon was
observed: SiO2 (see, e.g., [27]); Si3N4 [28], Al2O3 [29, 30]
and ZrO2 [31]. An external dielectric can influence the
bandgap of Si nanocrystals via two ‘mechanisms’, as was
pointed out above. First, the confining potential leads to
the size quantization of the electron and hole energies in the
nanocrystal. These energies, in common with the bandgap of
the bulk Si, define the single-particle gap �0. Second, the
difference in dielectric constants of the host matrix and the
nanocrystal induces the polarization charges at the interface
and, consequently, the polarization fields which correct the
nanocrystal bandgap. Because of different values of band
offsets, as well as of dielectric constants for different matrices
(see table 1), it is possible to expect some quantitative, and
even qualitative, features in the formation of the optical gap of
Si nanocrystals surrounded by different oxides or nitrides.

Size dependence of the confinement energy EC = �0 −εg

of the non-interacting electron–hole pair in Si nanocrystals
placed in SiO2 is presented in figure 2. The dependence is
approximately described by the law: EC ∼ R−b ; with b
varying from 1.67 to 1.9 as R increases from 1 to 3 nm. The
inset shows �EC = ESiO2

C − E X
C as a function of the dot

radius, where X stands for the surrounding matrix: Si3N4,
Al2O3 or ZrO2. One can see that, when the surrounding matrix
is SiO2 or Al2O3, the confinement energies almost coincide
since �EC = ESiO2

C − EAl2O3
C remains small enough at any

R. �EC for Si3N4, and ZrO2 are not so small, but remain
very close, i.e. the confinement energies in these cases have
close values as well. This is obviously due to the close values
of the band offsets (potential barriers for the carriers) at the
interfaces Si/SiO2 or Si/Al2O3, as well as at the Si/Si3N4 or
Si/ZrO2 interfaces. At the same time, significant difference
in the bandgaps (and, correspondingly, in the band offsets)
of SiO2 (8.9 eV) or Al2O3 (8.8 eV), and Si3N4 (5.3 eV) or
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Figure 3. Total and polarization corrections to the single-particle gap
of Si nanocrystals as functions of the nanocrystal radius at the
transition layer thickness a = 0.2 nm. The surrounding matrix is
(from top to bottom): SiO2, Si3N4, Al2O3 and ZrO2.

ZrO2 (5 eV) provides a considerable (of the order of tens of a
per cent) shift of the confinement energy. Note also that the
parameter b for the case of the ZrO2 matrix varies from 1.5
to 1.8 as R increases from 1 to 3 nm. We can thus conclude
that the bandgap width of the surrounding dielectric is an
essential factor affecting both single-particle and optical gaps
of a silicon nanocrystal.

Corrections to the single-particle gap �0 caused by both
the polarization fields and the direct screened electron–hole
Coulomb interaction at a = 0.2 nm are shown in figure 3
for all the dielectric matrices mentioned above. We have
depicted in the figure the total correction δ and, separately,
the polarization correction δp. It is worth noting that the total
correction is of the same order of magnitude as the difference in
the confinement energies (or in the single-particle gaps) �EC

for nanocrystals embedded in matrices with strongly different
bandgaps. In contrast, the polarization correction turns out to
be sufficiently small compared to δ, and especially compared
to�EC. Consequently, the polarization fields do not contribute
substantially to the optical gap of Si crystallites.

This is a consequence of the compensation effect.
Separately, the single-particle (the first two terms on the right-
hand side of equation (5)) and the two-particle (the third term
on the right-hand side of equation (5)) polarization corrections
are large enough. For the SiO2 matrix, their values equal
270 meV and −220 meV, respectively, for the nanocrystal with
R = 1 nm. However, because of their opposite signs these
terms considerably compensate each other. As a result, the
total polarization shift is relatively small.

Earlier, the compensation effect in Si crystallites has
been discussed within the framework of the empirical
pseudopotential [16] and the tight-binding [17] calculations. It
was found that the single-particle self-polarization correction
and the two-particle polarization correction almost cancel
each other. Admittedly, Delerue et al [17] have found the
compensation to be incomplete. It was presumably due to
the inclusion of the direct screened Coulomb interaction into
the two-particle compensating contribution. According to our
estimations, the Coulomb shift is less than 0.15–0.2 eV for

1 nm radius nanocrystals. This magnitude agrees well with
the uncompensated part of the total gap correction that was
obtained by Delerue et al [17].

Note that the polarization shift and the compensation
efficiency strongly depends on the host matrix as seen in
figure 3. In particular, the total polarization correction can
change its sign when the dielectric constant of the matrix
becomes greater than that of silicon. In this case a negative
polarization shift adds to the negative Coulomb shift δc and
increases the total correction δ. For this reason, δ for Si
crystallites surrounded by a ZrO2 matrix is maximal over all
the considered cases. In fact, this is a direct consequence of the
polarization fields’ dependence on εs − εd. The polarization
shift becomes considerably smaller if the dielectric constants
of silicon and the surrounding matrix are close. For instance,
for Si3N4 and Al2O3 matrices, δp does not exceed 16 and
10 meV, respectively. Such small values are due to not only the
compensation effect but also the weakness of both the single-
and two-particle polarization corrections. For instance, in the
case of the Al2O3 matrix the magnitudes of the single- and
two-particle polarization corrections do not exceed 30 meV
and 21 meV, respectively. For SiO2 or ZrO2 surroundings, the
polarization correction becomes considerably greater than that
for Si3N4 and Al2O3 but, nevertheless, appreciably less than δ
and �EC.

Thus, in any case, the total polarization correction remains
small compared to δc. We have found the Coulomb shift δc

to be insensitive to the dielectric constant of the surrounding
matrix, because the wavefunctions of the carriers weakly
penetrate outside the nanocrystal. Therefore, the main
contribution to δc comes from the direct Coulomb electron–
hole interaction when the carriers are situated within the
quantum dot. In this case, the Coulomb interaction is εs times
weakened by the valence electrons of silicon, and does not
depend, in fact, on εd. The difference in δc values is mainly
due to the different band offsets but not to the different εd. At
R = 1 nm, δc has the values −0.18 eV for SiO2, −0.16 eV
for Si3N4, −0.17 eV for Al2O3, and −0.15 eV for ZrO2.
Absolute values of δc reduce as R increases. At R = 3 nm,
δc ≈ −66 meV, independent of the dielectric environment.

The total correction δ is of the same order of magnitude as
�EC. For the surrounding matrices considered in the present
paper, we obtain the total correction equal to −0.13 eV for
SiO2, −0.15 eV for Si3N4, −0.16 eV for Al2O3, and −0.18 eV
for ZrO2 at R = 1 nm. As the nanocrystal radius increases, the
magnitude of the total correction gradually drops and becomes
approximately two times less at R = 3 nm.

Previous calculations carried out for silicon nanocrystals
embedded in an infinitely wide bandgap material [12, 14, 15]
gave the total correction close to −0.25 eV [12], −0.4 eV [14]
and −0.3 eV [15] for 1 nm radius nanocrystal, with the
correction decreasing approximately as R−1 with increasing
size. Ferreira and Proetto [13] accepted the barrier heights
equal to the electron affinity of the corresponding bulk material
for electrons, and infinity for holes. They found an exciton
correction of the order of −0.2 eV for a 1 nm radius dot.
As the nanocrystal size increases, the magnitude of this
correction decreased as R−0.7. However, the authors (as
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Figure 4. Polarization correction as a function of the transition layer
thickness for the system SiO2:nc-Si at three different nanocrystal
radii indicated in the figure.

well as the authors of some other works [12, 14]) treated
the potential energy of an electron–hole pair in a nanocrystal
similar to bulk silicon as V = −e2/εsreh, without taking
into account any polarization fields. The interaction with the
polarization fields has been taken into account by Moskalenko
and Yassievich [15] who supposed silicon nanocrystals to be
embedded in an SiO2 matrix with εd = 4. As one can see,
the values of the total shift δ obtained in the present work are
somewhat less than those calculated earlier [12–15]. It is clear,
however, that the main reason for this discrepancy lies in the
approximation of infinite barriers that was used, in fact, in
all the cited works, which strongly enhances the correction’s
magnitude.

Let us finally discuss the sensitivity of the investigated
system to the transition layer thickness. For this purpose we
have depicted the total polarization correction δp as a function
of a. The dependence δp(a) for the system SiO2:nc-Si at three
different values of the nanocrystal radii, and within reasonable
range of the layer thickness, is shown in figure 4. One can
see that the polarization correction increases as the crystallite
radius decreases but sufficiently slowly varies with changing
the layer thickness. A similar smooth behaviour of δp(a)
is observed for the other dielectric matrices (see figure 5).
Absolute values of δp(a) for these three matrices are less
than the one obtained for the system SiO2:nc-Si at the same
nanocrystal radii. This is naturally explained by the greater
relative difference in the dielectric constants for the Si/SiO2

interface. The weak dependence on the layer thickness argues
in favour of the fact that concrete parameters of the layer have
no fundamental significance. The presence of the layer is rather
important because of the removal of the artificial divergence
in the self-polarization potential energy, which leads, in turn,
to overestimated values of both the nanocrystal gap and its
correction.

The Coulomb correction δc is, in fact, independent of
the transition layer thickness. For example, for 1 nm
radius nanocrystals in SiO2, δc remains constant and equal to
−0.18 eV at 0 < a < 3 nm. As was already pointed out,
the values of δc for the same nanocrystals embedded in all the
other matrices are as follows: −0.16 eV for Si3N4, −0.17 eV
for Al2O3, and −0.15 eV for ZrO2. These values also remain

Figure 5. Polarization correction as a function of the transition layer
thickness at R = 1 nm for three different surroundings shown in the
figure.

constant within the range considered here (0 < a < 3 nm)
of layer thicknesses. Thus, it is indeed possible to conclude
that the Coulomb shift is not sensitive to the presence of the
transition layer, as was already mentioned earlier.

4. Conclusion

Summarizing our consideration, one can formulate some
basic statements reflecting the essence of the investigation
performed.

First of all, it has been shown that the influence of
the host matrix on the single-particle and optical gaps of
silicon nanocrystals is mainly due to a quantum confinement.
Franceschetti and Zunger [16] have already pointed out a
determinative role of the confining potential in the formation
of the exciton spectrum in a silicon quantum dot. They
found the single-particle and optical gaps to be only slightly
different because of the relatively small contribution of the
direct Coulomb interaction to the optical gap. However, they
did not examine the effect of different insulating matrices on
the nanocrystal’s energy spectrum. We have found that the
dispersion of the gap values can be large enough for different
surrounding materials. Varying the matrix and, consequently,
the band offsets, it is possible to attain essential shifts of
the energy levels of electrons and holes in a nanocrystal,
which results in an essential change of the nanocrystal’s
gap or, similarly, of the confinement energy. In contrast,
polarization fields weakly affect the optical gap for all the
matrices considered. Their contribution to the gap correction
is 1–2 orders of magnitude less than the dispersion of the
gap values for different matrices. One may conclude that, in
contrast to the quantum wires [1], in silicon quantum dots the
polarization shift δp of the exciton energy is sufficiently small.

As was shown, the polarization correction, being always
small, weakly depends on the transition layer thickness.
Nevertheless, the role of the layer is very important. Its
presence allows one to consider a realistic model of a quantum
dot with finite potential barriers, which provides us with real
values of the bandgap corrections.

One more factor substantively influencing the optical gap
of Si nanocrystals is the direct screened Coulomb electron–
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hole interaction always reducing the gap. The Coulomb
correction δc turns out to be much more than the polarization
correction, and comparable with some typical values of �EC.
Moreover, for nanocrystals with radii about, or more than,
2 nm, the Coulomb shift becomes even greater than maximal
�EC equal to ESiO2

C − EZrO2
C . Thus, the direct Coulomb

interaction becomes a determinative factor influencing the
optical gap corrections for 2–3 nm radius nanocrystals.

Note at last that the optical gap decrease caused by the
direct Coulomb and polarization fields in silicon nanocrystals
is considerably less than the basic optical gap �0 and
confinement energy EC, both defined by a size quantization.
This justifies an application of the perturbation theory in our
calculations.
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